create Nightingale Rose Chart with pyecharts

  1. install python library
    pip3 install pyecharts
    pip3 install xlrd
  2. download excel data ca.xls from https://github.com/zhuby1973/geopandas
  3. write the code
import pandas as pd
from pyecharts.charts import Pie
from pyecharts import options as opts
# load data
df = pd.read_excel("ca.xls")
v = df['Province'].values.tolist()
d = df['cases'].values.tolist()
# set color
color_series = ['#FAE927','#E9E416','#C9DA36','#9ECB3C','#6DBC49',
'#37B44E','#3DBA78','#14ADCF','#209AC9','#1E91CA',
'#2C6BA0','#2B55A1','#2D3D8E','#44388E','#6A368B'
'#7D3990','#A63F98','#C31C88','#D52178','#D5225B',
'#D02C2A','#D44C2D','#F57A34','#FA8F2F','#D99D21',
'#CF7B25','#CF7B25','#CF7B25']
pie1 = Pie(init_opts=opts.InitOpts(width='1350px', height='750px'))
pie1.set_colors(color_series)
pie1.add("", [list(z) for z in zip(v, d)],
radius=["30%", "135%"],
center=["50%", "65%"],
rosetype="area"
)
pie1.set_global_opts(title_opts=opts.TitleOpts(title='rose'),
legend_opts=opts.LegendOpts(is_show=False),
toolbox_opts=opts.ToolboxOpts())
pie1.set_series_opts(label_opts=opts.LabelOpts(is_show=True, position="inside", font_size=12,
formatter="{b}:{c}例", font_style="italic",
font_weight="bold", font_family="Microsoft YaHei"
),
)
# generate html file
pie1.render("rose.html")
import pandas as pd from pyecharts.charts import Pie from pyecharts import options as opts # load data df = pd.read_excel("ca.xls") v = df['Province'].values.tolist() d = df['cases'].values.tolist() # set color color_series = ['#FAE927','#E9E416','#C9DA36','#9ECB3C','#6DBC49', '#37B44E','#3DBA78','#14ADCF','#209AC9','#1E91CA', '#2C6BA0','#2B55A1','#2D3D8E','#44388E','#6A368B' '#7D3990','#A63F98','#C31C88','#D52178','#D5225B', '#D02C2A','#D44C2D','#F57A34','#FA8F2F','#D99D21', '#CF7B25','#CF7B25','#CF7B25'] pie1 = Pie(init_opts=opts.InitOpts(width='1350px', height='750px')) pie1.set_colors(color_series) pie1.add("", [list(z) for z in zip(v, d)], radius=["30%", "135%"], center=["50%", "65%"], rosetype="area" ) pie1.set_global_opts(title_opts=opts.TitleOpts(title='rose'), legend_opts=opts.LegendOpts(is_show=False), toolbox_opts=opts.ToolboxOpts()) pie1.set_series_opts(label_opts=opts.LabelOpts(is_show=True, position="inside", font_size=12, formatter="{b}:{c}例", font_style="italic", font_weight="bold", font_family="Microsoft YaHei" ), ) # generate html file pie1.render("rose.html")
import pandas as pd
from pyecharts.charts import Pie
from pyecharts import options as opts
# load data
df = pd.read_excel("ca.xls")
v = df['Province'].values.tolist()
d = df['cases'].values.tolist()
# set color
color_series = ['#FAE927','#E9E416','#C9DA36','#9ECB3C','#6DBC49',
                '#37B44E','#3DBA78','#14ADCF','#209AC9','#1E91CA',
                '#2C6BA0','#2B55A1','#2D3D8E','#44388E','#6A368B'
                '#7D3990','#A63F98','#C31C88','#D52178','#D5225B',
                '#D02C2A','#D44C2D','#F57A34','#FA8F2F','#D99D21',
                '#CF7B25','#CF7B25','#CF7B25']

pie1 = Pie(init_opts=opts.InitOpts(width='1350px', height='750px'))
pie1.set_colors(color_series)

pie1.add("", [list(z) for z in zip(v, d)],
        radius=["30%", "135%"],
        center=["50%", "65%"],
        rosetype="area"
        )
pie1.set_global_opts(title_opts=opts.TitleOpts(title='rose'),
                     legend_opts=opts.LegendOpts(is_show=False),
                     toolbox_opts=opts.ToolboxOpts())
pie1.set_series_opts(label_opts=opts.LabelOpts(is_show=True, position="inside", font_size=12,
                                               formatter="{b}:{c}例", font_style="italic",
                                               font_weight="bold", font_family="Microsoft YaHei"
                                               ),
                     )
# generate html file
pie1.render("rose.html")

Create a Canada population map in Python using GeoPandas and Matplotlib

Step 1: Install required Python libraries

pip install descartes
pip install geopandas
pip install matplotlib
pip install numpy
pip install pandas
pip install descartes pip install geopandas pip install matplotlib pip install numpy pip install pandas
pip install descartes
pip install geopandas
pip install matplotlib
pip install numpy
pip install pandas

Step 2: Download Canada population and shapefile
you can search and Download Canada shapefile from Statistics Canada or pull it from Github(https://github.com/zhuby1973/geopandas.git)

the shapefile include 3 files, we need save it in same folder:
lpr_000b16a_e.dbf
lpr_000b16a_e.shp
lpr_000b16a_e.shx

Step 3: Begin to code

import pandas as pd
import numpy as np
import geopandas as gpd
import matplotlib.pyplot as plt
#load Canada shapefile
fp = "lpr_000b16a_e.shp"
map_df = gpd.read_file(fp)
#load Canada population csv file
province = pd.read_csv("1710000901-eng.csv", sep=",")
# join the geodataframe with the csv dataframe
merged = map_df.merge(province, how='left', left_on="PRENAME", right_on="Geography")
merged=merged.rename(index=str, columns={"PRENAME":"PRENAME", "geometry":"geometry", "Q4 2020":"population"})
# add province name and populations on map
fig = plt.figure(1, figsize=(25,15))
ax = fig.add_subplot()
merged.apply(lambda x: ax.annotate(text=x.PRENAME + "\n" + str(x.population), xy=x.geometry.centroid.coords[0], ha='center', fontsize=14, color='blue'), axis=1);
merged.boundary.plot(ax=ax, color='Black', linewidth=.4)
merged.plot(ax=ax, cmap='Pastel2', figsize=(12, 12))
ax.text(-0.05, 0.5, 'http://pythondesign.ca/', transform=ax.transAxes,
fontsize=20, color='gray', alpha=0.5,
ha='center', va='center', rotation='90')
import pandas as pd import numpy as np import geopandas as gpd import matplotlib.pyplot as plt #load Canada shapefile fp = "lpr_000b16a_e.shp" map_df = gpd.read_file(fp) #load Canada population csv file province = pd.read_csv("1710000901-eng.csv", sep=",") # join the geodataframe with the csv dataframe merged = map_df.merge(province, how='left', left_on="PRENAME", right_on="Geography") merged=merged.rename(index=str, columns={"PRENAME":"PRENAME", "geometry":"geometry", "Q4 2020":"population"}) # add province name and populations on map fig = plt.figure(1, figsize=(25,15)) ax = fig.add_subplot() merged.apply(lambda x: ax.annotate(text=x.PRENAME + "\n" + str(x.population), xy=x.geometry.centroid.coords[0], ha='center', fontsize=14, color='blue'), axis=1); merged.boundary.plot(ax=ax, color='Black', linewidth=.4) merged.plot(ax=ax, cmap='Pastel2', figsize=(12, 12)) ax.text(-0.05, 0.5, 'http://pythondesign.ca/', transform=ax.transAxes, fontsize=20, color='gray', alpha=0.5, ha='center', va='center', rotation='90')
import pandas as pd
import numpy as np
import geopandas as gpd
import matplotlib.pyplot as plt

#load Canada shapefile
fp = "lpr_000b16a_e.shp"
map_df = gpd.read_file(fp)

#load Canada population csv file
province = pd.read_csv("1710000901-eng.csv", sep=",")

# join the geodataframe with the csv dataframe
merged = map_df.merge(province, how='left', left_on="PRENAME", right_on="Geography")
merged=merged.rename(index=str, columns={"PRENAME":"PRENAME", "geometry":"geometry", "Q4 2020":"population"})

# add province name and populations on map
fig = plt.figure(1, figsize=(25,15)) 
ax = fig.add_subplot()
merged.apply(lambda x: ax.annotate(text=x.PRENAME + "\n" + str(x.population), xy=x.geometry.centroid.coords[0], ha='center', fontsize=14, color='blue'), axis=1);
merged.boundary.plot(ax=ax, color='Black', linewidth=.4)
merged.plot(ax=ax, cmap='Pastel2', figsize=(12, 12))
ax.text(-0.05, 0.5, 'http://pythondesign.ca/', transform=ax.transAxes,
        fontsize=20, color='gray', alpha=0.5,
        ha='center', va='center', rotation='90')

Step 4: Execute the code to generate the map

Inspired by:
1. https://health-infobase.canada.ca/covid-19/dashboard/
2. https://jcutrer.com/python/learn-geopandas-plotting-usmaps

need fix the overlapping annotations later.

generate artistic or animated QR-Code with python MyQR

  1. pip install myqr
  2. generate common qr-code
from MyQR import myqr
myqr.run(
words='https://www.ibm.com',
)
from MyQR import myqr myqr.run( words='https://www.ibm.com', )
from MyQR import myqr
myqr.run(
    words='https://www.ibm.com',
)

3. generate colorized artistic qr-code with your own png picture

from MyQR import myqr
myqr.run(
words='https://www.ibm.com',
picture='C:\Users\zhuby\panda.png',
colorized=True,
)
from MyQR import myqr myqr.run( words='https://www.ibm.com', picture='C:\Users\zhuby\panda.png', colorized=True, )
from MyQR import myqr
myqr.run(
words='https://www.ibm.com',
picture='C:\Users\zhuby\panda.png',
colorized=True,
)

4. generate animated qr-code

from MyQR import myqr
myqr.run(
words='https://www.ibm.com',
version=5,
level='H',
picture='C:\\Users\\zhuby\\cat.gif',
colorized=True,
contrast=1.0,
brightness=1.0,
save_name='cat_qrcode.gif', #format could be .jpg .png .bmp .gif
save_dir='C:\\Users\\zhuby',
)
from MyQR import myqr myqr.run( words='https://www.ibm.com', version=5, level='H', picture='C:\\Users\\zhuby\\cat.gif', colorized=True, contrast=1.0, brightness=1.0, save_name='cat_qrcode.gif', #format could be .jpg .png .bmp .gif save_dir='C:\\Users\\zhuby', )
from MyQR import myqr
myqr.run(
    words='https://www.ibm.com',
    version=5,  
    level='H', 
    picture='C:\\Users\\zhuby\\cat.gif',  
    colorized=True, 
    contrast=1.0, 
    brightness=1.0, 
    save_name='cat_qrcode.gif', #format could be .jpg .png .bmp .gif
    save_dir='C:\\Users\\zhuby',
)

asynchronous execute python app with ThreadPoolExecutor

we can launch parallel tasks with python concurrent.futures to double the speed.
here is the original code with one thread one_thread.py:

import flask
import json
import time
app = flask.Flask(__name__)
def read_file():
time.sleep(0.1)
return "file result"
def read_db():
time.sleep(0.2)
return "db result"
def read_api():
time.sleep(0.3)
return "api result"
@app.route("/")
def index():
result_file = read_file()
result_db = read_db()
result_api = read_api()
return json.dumps({
"result_file": result_file,
"result_db": result_db,
"result_api": result_api,
})
if __name__ == "__main__":
app.run(host='0.0.0.0')
import flask import json import time app = flask.Flask(__name__) def read_file(): time.sleep(0.1) return "file result" def read_db(): time.sleep(0.2) return "db result" def read_api(): time.sleep(0.3) return "api result" @app.route("/") def index(): result_file = read_file() result_db = read_db() result_api = read_api() return json.dumps({ "result_file": result_file, "result_db": result_db, "result_api": result_api, }) if __name__ == "__main__": app.run(host='0.0.0.0')
import flask
import json
import time

app = flask.Flask(__name__)

def read_file():
	time.sleep(0.1)
	return "file result"
	
def read_db():
	time.sleep(0.2)
	return "db result"
	
def read_api():
	time.sleep(0.3)
	return "api result"
	
@app.route("/")
def index():
	result_file = read_file()
	result_db = read_db()
	result_api = read_api()
	
	return json.dumps({
		"result_file": result_file,
		"result_db": result_db,
		"result_api": result_api,
	})
	
if __name__ == "__main__":
	app.run(host='0.0.0.0')

and another one multiple_threads.py

import flask
import json
import time
from concurrent.futures import ThreadPoolExecutor
app = flask.Flask(__name__)
pool = ThreadPoolExecutor()
def read_file():
time.sleep(0.1)
return "file result"
def read_db():
time.sleep(0.2)
return "db result"
def read_api():
time.sleep(0.3)
return "api result"
@app.route("/")
def index():
result_file = pool.submit(read_file)
result_db = pool.submit(read_db)
result_api = pool.submit(read_api)
return json.dumps({
"result_file": result_file.result(),
"result_db": result_db.result(),
"result_api": result_api.result(),
})
if __name__ == "__main__":
app.run(host='0.0.0.0')
import flask import json import time from concurrent.futures import ThreadPoolExecutor app = flask.Flask(__name__) pool = ThreadPoolExecutor() def read_file(): time.sleep(0.1) return "file result" def read_db(): time.sleep(0.2) return "db result" def read_api(): time.sleep(0.3) return "api result" @app.route("/") def index(): result_file = pool.submit(read_file) result_db = pool.submit(read_db) result_api = pool.submit(read_api) return json.dumps({ "result_file": result_file.result(), "result_db": result_db.result(), "result_api": result_api.result(), }) if __name__ == "__main__": app.run(host='0.0.0.0')
import flask
import json
import time
from concurrent.futures import ThreadPoolExecutor

app = flask.Flask(__name__)
pool = ThreadPoolExecutor()

def read_file():
	time.sleep(0.1)
	return "file result"
	
def read_db():
	time.sleep(0.2)
	return "db result"
	
def read_api():
	time.sleep(0.3)
	return "api result"
	
@app.route("/")
def index():
	result_file = pool.submit(read_file)
	result_db = pool.submit(read_db)
	result_api = pool.submit(read_api)
	
	return json.dumps({
		"result_file": result_file.result(),
		"result_db": result_db.result(),
		"result_api": result_api.result(),
	})
	
if __name__ == "__main__":
	app.run(host='0.0.0.0')

run curl command to compare the real time spend:

output from one_thread.py:
ubuntu@ubuntu2020:~$ time curl http://192.168.0.171:5000
{"result_file": "file result", "result_db": "db result", "result_api": "api result"}
real 0m0.629s
user 0m0.009s
sys 0m0.013s
output from multiple_threads.py:
ubuntu@ubuntu2020:~$ time curl http://192.168.0.171:5000
{"result_file": "file result", "result_db": "db result", "result_api": "api result"}
real 0m0.328s
user 0m0.014s
sys 0m0.010s
the real time is dropped from 629ms to 328ms with multiple threads!
output from one_thread.py: ubuntu@ubuntu2020:~$ time curl http://192.168.0.171:5000 {"result_file": "file result", "result_db": "db result", "result_api": "api result"} real 0m0.629s user 0m0.009s sys 0m0.013s output from multiple_threads.py: ubuntu@ubuntu2020:~$ time curl http://192.168.0.171:5000 {"result_file": "file result", "result_db": "db result", "result_api": "api result"} real 0m0.328s user 0m0.014s sys 0m0.010s the real time is dropped from 629ms to 328ms with multiple threads!
output from one_thread.py:
ubuntu@ubuntu2020:~$ time curl http://192.168.0.171:5000
{"result_file": "file result", "result_db": "db result", "result_api": "api result"}
real    0m0.629s
user    0m0.009s
sys     0m0.013s

output from multiple_threads.py:
ubuntu@ubuntu2020:~$ time curl http://192.168.0.171:5000
{"result_file": "file result", "result_db": "db result", "result_api": "api result"}
real    0m0.328s
user    0m0.014s
sys     0m0.010s

the real time is dropped from 629ms to 328ms with multiple threads!


generate python API testing code with postman

  1. Register on https://www.zipcodeapi.com/API to get your Application Key: 8bq9sfKQBKuI5mWg3JKFKsDdGOLaqoWXZQ6MayM3ApbQSKJ6AjmRjhxiNuRzSgki

  2. run GET on postman
    https://www.zipcodeapi.com/rest/8bq9sfKQBKuI5mWg3JKFKsDdGOLaqoWXZQ6MayM3ApbQSKJ6AjmRjhxiNuRzSgki/info.json/10095/degrees

    then click code and select python, you will get python code with requests:

  3. copy the python code into postman_api.py

    import requests
    url = "https://www.zipcodeapi.com/rest/8bq9sfKQBKuI5mWg3JKFKsDdGOLaqoWXZQ6MayM3ApbQSKJ6AjmRjhxiNuRzSgki/info.json/10095/degrees"
    payload={}
    headers = {}
    response = requests.request("GET", url, headers=headers, data=payload)
    print(response.text)
  4. run postman_api.py to verify

    C:\Users\zhuby>postman_api.py
    {"zip_code":"10095","lat":40.710028,"lng":-73.990053,"city":"New York","state":"NY","timezone":{"timezone_identifier":"America\/New_York","timezone_abbr":"EST","utc_offset_sec":-18000,"is_dst":"F"},"acceptable_city_names":[],"area_codes":[212,646,917]}

use MS playwright-python for testing automation

https://github.com/microsoft/playwright-python

  1. install playwright-python
    pip3 install playwright

  2. install webkit
    python -m playwright install

  3. generate code
    python -m playwright codegen –target python -o mytest.py -b webkit https://portal.azure.com/#home
    Login Azure and do some operations in the WebKit window, then close it, you will get mytest.py generated in same directory, uploaded mine to github:
    https://github.com/zhuby1973/azure/blob/main/mytest.py

  4. python mytest.py

Create one executable file for a Flask app with PyInstaller

  1. pip3 install pyinstaller

  2. we have a sample flask app server.py

    from flask import Flask
    server = Flask(__name__)
    @server.route("/")
    def hello():
        return "Hello World!"
    if __name__ == "__main__":
    server.run(host='0.0.0.0')
  3. pyinstaller -F server.py
    it will create a executable file server in ./dist

  4. verify the executable file

    root@labvm:~/python_docker/src/dist# ./server
    * Serving Flask app "server" (lazy loading)
    * Environment: production
    WARNING: This is a development server. Do not use it in a production deployment.
    Use a production WSGI server instead.
    * Debug mode: off
    * Running on http://0.0.0.0:5000/ (Press CTRL+C to quit)

if you have static and templates folder and other py files, you can run command like:
pyinstaller -F -i BreezePython.ico --add-data="HttpServer\static;HttpServer\static" --add-data="HttpServer\templates;Httpserver\templates" --add-data="settings.py;." manage.py

Deploy Docker images to Azure Kubernetes Service cluster

  1. create userAKSCluster
    az aks create \
    –resource-group teamResources \
    –name userAKSCluster \
    –location eastus \
    –enable-addons monitoring,kube-dashboard \
    –node-count 1 \
    –attach-acr registryjrm1796 \
    –generate-ssh-keys \
    –enable-managed-identity \
    –enable-cluster-autoscaler \
    –min-count 1 \
    –max-count 2

  2. another way to create and attach to acr
    az login
    az group create –name HansResourceGroup –location eastus
    az aks create –resource-group HansResourceGroup –name myAKSCluster –node-count 1 –enable-addons monitoring –generate-ssh-keys
    az aks get-credentials –resource-group HansResourceGroup –name myAKSCluster
    az aks update -n myAKSCluster -g HansResourceGroup –attach-acr registryjrm1796
    az acr repository list –name registryjrm1796 –output table
    az acr repository show-tags –name registryjrm1796 –repository user-java –output table
    az acr list –resource-group teamResources –query "[].{acrLoginServer:loginServer}" –output table

  3. Connect to the cluster
    az aks get-credentials –resource-group teamResources –name userAKSCluster
    kubectl get nodes

  4. Deploy azure-vote sample app to AKSCluster
    root@labvm:~/azure-voting-app-redis/azure-vote# kubectl apply -f https://raw.githubusercontent.com/zhuby1973/azure/main/azure-vote.yaml
    deployment.apps/azure-vote-back created
    service/azure-vote-back created
    deployment.apps/azure-vote-front created
    service/azure-vote-front created

  5. Test the application
    root@labvm:~/azure-voting-app-redis/azure-vote# kubectl get service azure-vote-front –watch
    NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
    azure-vote-front LoadBalancer 10.0.183.193 20.75.153.18 80:32384/TCP 25s
    you can verify it on http://20.75.153.18/

    you can read the sample code on https://github.com/Azure-Samples/azure-voting-app-redis

NOTE commands to push docker images to acr, use user-java image as example:
az login
az acr login –name registryjrm1796
docker tag user-java registryjrm1796.azurecr.io/user-java:latest
docker push registryjrm1796.azurecr.io/user-java
then you should be able to find user-java in Container registries/registryjrm1796/Repositories on https://portal.azure.com/